wird in neuem Tab geöffnet

Deploying Scalable Machine Learning for Data Science

Verfasser: Suche nach diesem Verfasser Sullivan, Dan
Jahr: 2018
Mediengruppe: e-Medien Onleihe
Link zu einem externen Medieninhalt - wird in neuem Tab geöffnet
nicht verfügbar

Exemplare

AktionZweigstelleStandorteMediengruppeStatusFristVorbestellungen
Vorbestellen Zweigstelle: Onleihe Standorte: Mediengruppe: e-Medien Onleihe Status: download Frist: Vorbestellungen: 0

Inhalt

Machine learning models often run in complex production environments that can adapt to the ebb and flow of big data. The tools and practices that help data scientists rapidly build machine learning models are not sufficient to deploy those models at scale. To deliver scalable solutions, you need a whole new toolset. This course provides data scientists and DevOps engineers with an overview of common design patterns for scalable machine learning architectures, as well as tools for deploying and maintaining machine learning models in production. Instructor Dan Sullivan reviews three technologies that enable scalable machine learning: services that expose models through APIs, containers for deploying models, and orchestration tools like Kubernetes that help manage containers and clusters. Plus, get tips for monitoring the performance of your services in production environments.

Details

Verfasser: Suche nach diesem Verfasser Sullivan, Dan
Jahr: 2018
opens in new tab
Systematik: Suche nach dieser Systematik eLearning
Interessenkreis: Suche nach diesem Interessenskreis eLearning
Beschreibung: 01:43:10.00
Suche nach dieser Beteiligten Person
Mediengruppe: e-Medien Onleihe